
Analyzing proteome topology and function by automated
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Harald Gollnick2, Manuela Friedenberger1,6, Marcus Bode1,5,6 & Andreas W M Dress3,4,6

Temporal and spatial regulation of proteins contributes to function. We describe a multidimensional microscopic robot technology

for high-throughput protein colocalization studies that runs cycles of fluorescence tagging, imaging and bleaching in situ. This

technology combines three advances: a fluorescence technique capable of mapping hundreds of different proteins in one tissue

section or cell sample; a method selecting the most prominent combinatorial molecular patterns by representing the data as

binary vectors; and a system for imaging the distribution of these protein clusters in a so-called toponome map. By analyzing

many cell and tissue types, we show that this approach reveals rules of hierarchical protein network organization, in which the

frequency distribution of different protein clusters obeys Zipf’s law, and state-specific lead proteins appear to control protein

network topology and function. The technology may facilitate the development of diagnostics and targeted therapies.

Establishing how networks of proteins associate in time and space to
generate function is an important goal of post-genomic research1.
Formation of interaction networks within a cell requires proteins to be
at the right place, at the right time and concentration. Molecular
networks, which enable specific cellular functions, obey a unique
protein colocation and anti-colocation code2.

Fluorescent proteins have been used to examine close molecular
colocations/interactions using fluorescence resonance energy transfer
(FRET) microscopy3–5, or the location of the cellular proteome in
intact yeast6. Direct fluorescence detection of up to 17 different
proteins is now possible7. Nevertheless, none of these methods can
image sufficient numbers of proteins in a single sample to map protein
network features. Scanning mass spectrometry has been explored to
establish protein networks8,9, but its spatial resolution remains far
inferior to that of fluorescence microscopy.

We have previously described a technique termed multi-
epitope-ligand kartographie (MELK), henceforth referred to as
multi-epitope-ligand cartography (MELC), that can map the location
of several proteins in the one sample of cells or tissue using sequential
rounds of fluorescent detection in situ2. Here we demonstrate that
MELC can colocalize at least a hundred molecules in a single
sample and we describe an approach in which proteins detected in
each data point are represented as a multidimensional vector.
The summed vectors from an individual cell or tissue can be
represented by what we term a toponome map (from the Greek
tópoB, location, and nómoB, a rule or law), revealing hierarchical
features of protein organization. After demonstrating the method’s
validity and robustness, we show that the frequencies of protein

clusters obey Zipf’s law, a power law for highly organized systems, and
that MELC can readily be used to identify in situ the lead2 or hub
proteins10,11 responsible for organizing protein networks. We also
show that MELC can identify new diagnostic features and therapeutic
targets in diseases.

RESULTS

Multidimensional analysis of protein locations

MELC builds on fluorescence imaging by bleaching each dye com-
pletely after labeling and imaging, and then applying another set of
labeled antibodies (or other affinity reagents) to image the distribution
of additional molecules. By repeating these steps, large sets of
molecular distribution maps can be acquired with light-microscopic
resolution, thereby overcoming the limitations of traditional fluores-
cence microscopy (Supplementary Fig. 1a online).

To test the MELC technique, we mapped 18 cell-surface receptors in
peripheral blood mononuclear cells (PBMCs) using monoclonal anti-
body (mAb) library 1 (Supplementary Table 1 online) conjugated to
fluorescein isothiocyanate (FITC) or phycoerythrin (PE). PBMCs were
isolated and fixed on cover slips, incubated with FITC- or PE-
conjugated mAbs (Fig. 1a; CD4; CD8) and washed. After storing
the resulting images, we bleached the remaining fluorescent signals by
soft multiwavelength excitation centered on 485 nm for FITC and
546 nm for PE (to avoid damaging proteins by energy transfer), and
stored a post-bleaching image (data not shown). We repeated this cycle
nine times with one mAb or two mAbs per cycle. Protein distributions
varied strikingly from cell to cell (Fig. 1b), reflecting the heterogeneity
of protein localization in PBMCs from healthy donors.
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To obtain a protein colocalization map, we visualized MELC data by
superimposing images (Supplementary Video 1 online). However,
superimposition provides no direct estimate of which protein combi-
nations are formed in vivo. To address this issue, we represented
MELC data as vectors. Because each MELC map represents the
distribution of a single protein epitope, superimposition of these
maps provides a list of the epitopes present at each pixel. This list can
be expressed either as a vector of fluorescence intensities or, after
introducing appropriate threshold values for each epitope, as a 0.1-
vector denoting the presence or absence of every protein at each pixel.
Thus each primary data set (the fluorescence intensity images)
produces a collection of 0.1-vectors (binarized data sets) termed
combinatorial molecular phenotypes (CMPs; Fig. 2a–e). The rationale
for binarization is fourfold: (i) although a continuum of concentra-
tions may exist for each protein in a sample, MELC data sets based on
related intensity levels are extremely complex and difficult to handle
when large data sets have to be compared, (ii) binarized protein
patterns reflect the most prominent features of protein localization
(Fig. 2f,g), (iii) binarized data sets can rapidly be translated into
binary CMPs for immediate quantification and (iv) binary CMPs can
be easily visualized and readily explored as a toponome map of any cell
or tissue (Fig. 2d,e), and tested for robustness (see below).

Our analysis indicated that some CMPs (or slight variants, as
defined in Methods, Construction of 2D toponome maps) denote
functional regions of the cell or tissue in question. These features were
defined as CMP motifs: sets of CMPs which (i) invariably contain one
or more proteins (lead protein(s)), (ii) never contain one or more
proteins (absent proteins) and (iii) may or may not contain additional
proteins (wild-card proteins). Each CMP motif can thus be denoted
by a sequence of 1s, 0s and *s, indicating the lead, absent and wild-
card proteins, respectively. By assigning one color to each CMP motif,
we can subsequently produce cell and tissue maps, summarizing
protein organization in what we term a two-dimensional (2D) or
three-dimensional (3D) toponome map (Fig. 2d,e, respectively, and
Supplementary Video 1 online).

To test MELC for signal separation, we extracted nuclear and
cytoplasmic markers of a human hepatocyte (Fig. 2d) as positive

and negative controls in the imaging procedure. Golgi/ER structures,
cytokeratin and the nucleus are selectively stained by six different
molecular markers at the expected subcellular locations, demonstrat-
ing that MELC reliably produces established results (Fig. 2f,g; CMP
list in Supplementary Table 2 online). A similar control experiment
using rhabdomyosarcoma cells also showed compartment-specific
staining/signal separation (Supplementary Fig. 2 online). Moreover,
molecules known to be associated with each other, such as alpha-
and beta-tubulin, CD3 and CD4, and nine postsynaptic proteins,
were frequently found to be colocated by MELC (Fig. 2c; Fig. 3b–d;
Supplementary Fig. 2 online; and corresponding CMP lists in
Supplementary Table 2 online).

The position of a given protein in the labeling sequence might cause
differences in the protein’s apparent level, pushing its level in a pixel
above or below its threshold, and thereby affecting the CMPs. We
therefore repeated our original experiment (Fig. 1a) using (i) the
original sequence of antibodies, (ii) the same sequence inverted and
(iii) the same sequence randomly permuted, resulting in a total of 45
informative labeling reactions (Supplementary Fig. 3a–d online).
CMPs are not significantly affected by the order in which proteins
are labeled (Fig. 3a).

In this study, several experts manually selected the thresholds
from an automatically generated range. In addition, a fully auto-
mated system based on maximizing ‘mutual information’12 also gives
closely comparable values (A. Borissenko, A.V.M.D. & W.S., unpub-
lished data). Both approaches produce very similar results (Fig. 3a,
insert; Fig. 3b–d), confirming that our findings are not influenced
by changes in the algorithm used to set thresholds. Performance
tests revealed that MELC was specific and robust (Supplementary
Fig. 3 online).

To increase the rate of data acquisition and map proteins in a
wide variety of cells and tissues, we built 15 robotic work stations
(for details see Supplementary Fig. 1b,c online and Supplementary
Table 3 online). CMPs and CMP motifs were detected in all
samples, suggesting that proteomic organization into CMPs is
universal (examples in Figs. 2d,e and 3b,c,e,f and Supplementary
Videos 1–3 online).
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Figure 1 Protein mapping by MELC. (a) Phase contrast view of PBMCs from a healthy donor, followed by MELC maps of 18 cell surface proteins (subset of

library 1) in the same cells. Although some proteins are undetectable, they were readily detected in other samples (data not shown). (b) Mean protein levels

in each cell, showing striking heterogeneity among the 12 cells analyzed. Scale bar, 20 mm.
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Protein organization in model diseases

To explore how disease affects protein organization, we analyzed
skin biopsies from a patient with psoriasis13. More than 90 different
molecules were mapped in each tissue section within 100 MELC cycles,
comparing affected and unaffected skin (Supplementary Video 3, part
a, online). To confirm that the maps were specific and reproducible,

we remapped selected proteins on the same tissue section at different
stages of the procedure. The resulting CMPs reveal substantial differ-
ences between diseased and normal skin (Fig. 4a,b).

To corroborate these findings, we analyzed the location of
49 molecules in situ in patients with psoriasis, atopic dermatitis
(a related but distinct inflammatory skin disease14) and healthy
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Figure 2 Construction of toponome maps. (a) Phase contrast image of cell 1 from Figure 1b, followed by MELC maps of six proteins in this cell. Arrows 1

and 2 designate regions where the protein 1 (CD4)/protein 3 (CD45RA) ratio is high and low, respectively. These regions are colored red and blue in the CMPs
subpanel, and two additional regions with different protein abundances are colored orange and green. (b) Average fluorescence signal for each protein in each

of the regions defined in a. (c) Binary representation of the data in a, obtained by setting a constant threshold and adjusting the signal for each protein in each

region to 1 or 0 depending on whether it lies above or below this threshold resulting in different CMPs. A CMP motif characteristic of all four regions can then

be defined as shown on the bottom line and visualized (purple) in the right image of a. Note that in this experiment, the antibody concentrations used for

labeling were adjusted to give the threshold (for CMPs, see also Supplementary Table 2 online). (d) Toponome map of a primary human hepatocyte produced

by mapping 15 molecules (library 2), defining a set of subcellular CMPs and representing seven CMPs by different colors to display a set of mutually exclusive

compartments. (The same CMPs are mapped in Supplementary Video 1 online and are defined in Supplementary Table 2 online). (e) Toponome maps of

the tonsil and polymyositic muscle produced by mapping the 18 proteins mapped in Fig. 1a, defining prominent CMPs and representing each by a different

color. CMPs unique to each tissue are shown in white; those unique to the tonsil collectively define a CMP motif. (f) Control experiment illustrating that six

molecular markers (subset of library 2), specific either for cytoplasmic (left, four images) or nuclear structures (right, two images), give selective staining of

the corresponding compartments. Note that these markers were extracted from the MELC data set of d and displayed in one single optical plane of the same

cell obtained by deconvolution of z stack images. (g) Binarized data set based on threshold setting in the images shown in f (for image superimpositions

and corresponding CMPs see Supplementary Table 2 online). Note that the image data shown in Figures 1a,b and 2a–g are representative examples of a

multitude of independent MELC experiments in a broad variety of cells and tissues. Scale bars, 2 mm (a), 20 mm (d,f,g), 40 mm (e).
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controls (n ¼ 6, each). The levels of these 49 proteins in psoriasis and
atopic dermatitis were generally similar when averaged across
the entire tissue section (Fig. 4c). Toponome analysis, however,
identified CMP motifs on putative T cells associated with each
condition (Supplementary Fig. 4 online), identified candidate
keratinocyte stem cells in situ (Supplementary Fig. 5 online) and
singled out CD11a as a lead protein and potential therapeutic
target in atopic dermatitis (Supplementary Table 4 online). The latter
finding was validated by CD11a-specific, FITC-labeled efalizumab
(Raptiva); the binding pattern of this biological drug was nearly
identical to CD11a expression (Supplementary Fig. 6 online).

To find disease-specific CMP motifs, we worked with 48 molecules
(library 7 except CD1a) in an extended cohort. We identified a CD36+,

HLA-DR+, CD29– motif whose abundance discriminates among the
three skin conditions (n ¼ 10, each; P o 0.00018; Fig. 4d). Analysis of
the remaining molecules revealed a larger motif expressing the lead
proteins CD58/CD138/pan-CK. This larger motif predominantly
denotes keratinocytes from the upper epidermis (CMP motif I,
Fig. 4e), and is a possible hallmark of the hyperactivated suprabasal
keratinocyte islands typical of psoriasis15.

Frequency distribution of CMPs in vivo

Of the 248 (2.81 � 1014) possible CMPs in the previous experiment,
we detected only 531,075, 599,345 and 281,743 CMPs in patients
with psoriasis, atopic dermatitis and healthy controls, respectively
(n ¼ 10, each). We therefore attempted to correlate the number of

Figure 3 Robustness of CMP detection and 3D

colocalization mapping. (a) Effect of repeated

imaging and antibody order on the apparent

abundance of the top ten prominent CMPs

detected by MELC, using a sequence of 15

antibodies (subset of library 1), the same

sequence inverted and the same sequence

randomly permuted, all performed sequentially on

the one sample of PBMCs using expert-adjusted
protein thresholds for binarization (primary data

shown in Supplementary Fig. 3 online). Note that

90% of the top ten CMPs (as averaged over all

three sequels) remain the top ten, and only some

change their frequency ranks in the forward,

inverted and permuted sequels. Inset shows a

detail of a larger visual field illustrating the

location of the ten most frequent CMPs in each

of the three separate sequels of one run using (I)

thresholds defined by human experts, as in the

main graph or (II) thresholds defined by an

automatic system based on maximizing mutual

information12, demonstrating that the apparent

distribution of the CMPs is largely unaffected by

the method used to set thresholds. CMPs are

defined in Supplementary Table 2 online.

Numbering of symbols represents CMP frequency

rank within each sequel. (b) Toponome map

(library 8) of ten different synaptic proteins in
rat prefrontal cerebral cortex produced using

thresholds set by human experts. Note that the

differentially colored CMPs highlight specific

synaptic subregions of the brain tissue: (yellow)

dendritic and perineuronal synaptic regions,

(green) a subset of perineuronal synapses; (red

and blue) subsets of synapses in the neuropil,

together forming the major fraction of the

synaptic neuronal network (representative data of

three independent experiments). (c) Toponome

map of the same sample produced using

thresholds defined by the automatic system

based on maximizing mutual information, again

showing that the method used to set thresholds

has little effect on the apparent distribution

and frequency of CMPs detected (note that

the CMP colors indicate the same CMPs in both

experiments of b and c; CMPs are superimposed
on the corresponding phase contrast image).

(d) Phase contrast image corresponding to b and

c, displayed alone; inset denotes the ten CMPs of

b and c (for CMP color code see Supplementary Table 2 online). (e,f) 3D MELC imaging experiment showing surface-rendered, colocalization map of seven

postsynaptic proteins together with propidium iodide staining (library 4) in the neuropil (e) and a neuronal cell body (f) from rat spinal cord (lamina I/II).

The distribution of each molecule is represented by colors as indicated, omitting overlaps between the distribution patterns. Scale bars, 1 mm (e,f),

10 mm (a insert), 50 mm (b–d).
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observed CMPs with their individual frequency. The relationship
conformed to Zipf’s law16–19, in which the probability P(en) of the
n most frequent individual event en is proportional to a (negative)
power of n (Fig. 5, blue line). Reducing the number of molecules
examined weakened the relationship (Fig. 5, red and green lines), and
it was totally absent in randomly generated data (Fig. 5, inset). The
findings indicate that CMPs obtained by MELC unravel the highly
organized toponome.

Protein organization in experimental pathology

To investigate alterations of protein organization in experimentally
induced disease, we chose a model of chronic constriction injury
(CCI), in which chronic neuropathic pain is induced by unilateral
ligature of the sciatic nerve in rats20. This procedure is thought to
modulate interneuronal synapses in lamina I/II of the spinal cord at
lumbar level 3/4. We mapped ten synaptic proteins in this area using
MELC in two treated rats (four measurements) and two healthy
controls (three measurements) (library 8). These groups were distin-
guished by 167 out of 103 CMP motifs (t-test screening P o 0.01), of
which 91% were more frequent in controls.

The most prominent CMP motif in controls (with lead proteins
GRIP-1, CT and GluR2/3) showed a punctuate distribution associated
with dendrites in lamina I/II (Fig. 6a), indicative of axo-dendritic
synapses of the first afferent neuron. By contrast, a new motif
in treated rats (with lead proteins PSD-95 and NR2A, which were
never among lead proteins in controls) was totally restricted to
single dendritic structures on the treated side (Fig. 6b). In CCI, the
general variation in lamina I/II synapses thus appears to be replaced

by a PSD-95+/NR2A+ motif on a subset of dendrites that probably
plays a significant role in propagating chronic neuropathic pain.
PSD-95 knockout mice are insensitive to CCI, supporting this con-
clusion21. As PSD-95 is an adaptor protein for NR2A in postsynaptic
structures, inhibiting the interaction between NR2A and PSD-95 may
offer an approach for treating chronic neuropathic pain. Moreover, the
data show that proteins assembled in the average postsynaptic density,
as revealed by conventional proteomics in recent studies, can be highly
modified in individual synaptic regions, thus providing insight into
the functional organization of synapses in the central nervous system.
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Figure 4 Toponome maps of skin biopsies from patients with inflammatory skin disease. (a,b) Toponome

maps of psoriatic and normal skin from the same patient obtained by mapping more than 90
molecules within 100 MELC cycles (library 6), selecting seven prominent CMPs and representing

each by a different color (mapped CMPs are defined in Supplementary Table 2 online). (c) Average

frequencies of 49 molecules (library 7) across the entire section in biopsies from psoriatic skin

(diamonds) and atopic dermatitis (squares) relative to frequency in biopsies from healthy control skin

(n ¼ 6 individuals each); statistically significant differences between the two diseases are rare (filled

symbols, significant difference versus controls; open symbols, insignificant difference). (d) Box plot showing the overall frequency of CMP motif I (CD29–/

CD36+/CD58+/CD138+/HLA-DR+/pan-CK+) in psoriatic skin and atopic dermatitis compared with healthy control skin (n ¼ 10 individuals each), showing that

the frequency of this motif discriminates significantly between these diseases, in contrast to the frequency of single molecules (c). (e) Toponome map of

psoriatic epidermis showing the distribution of this motif (purple) and collagen type IV (blue, marking the basal membrane zone (Bmz) and blood vessels (Ve)

to distinguish the skin micro-compartments, epidermis (Ep) and dermis (De)) overlaid on the corresponding phase contrast image. Scale bars, 50 mm.
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Figure 5 Zipf’s plot of the relationship between the rank and the frequency
of CMP motifs in human skin. Data were obtained for the 49 molecules
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data for 49 molecules is progressively less apparent as fewer molecules are

examined. Inset, Zipf’s plot of the relationship between the rank and the

frequency of motifs obtained with 49 randomly distributed molecules,

showing that the linearity has disappeared.

NATURE BIOTECHNOLOGY ADVANCE ONLINE PUBLICATION 5

A R T I C L E S
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy



Identifying functional protein networks

To explore whether toponome maps can also be used to identify
subcellular protein networks, we mapped 23 different cell surface
proteins in the rhabdomyosarcoma cell line TE671 (Fig. 7). These
muscle tumor cells spontaneously enter an exploratory state in which
they form three cell extensions, one of which withdraws as the cell
proceeds to migrate. Four cell surface CMPs were present throughout
this process, forming an ordered sequence from the tip of two cell
extensions towards the cell body in the exploratory state (Fig. 7a,c).
The alanine-specific protease APN (CD13) was a lead protein in all
these CMPs, as shown by its localization (Fig. 7d) and the breakdown
of the fluorogenic substrate bis-ala-rhodamine 110 (Fig. 7b). Inhibi-
tion of aminopeptidases, especially APN, interferes with cell migration
by an unknown mechanism22,23. Based on the lead protein hypothesis2

we investigated the relationship between APN’s activity and cell
polarization. Treating spherical TE671 cells (Fig. 7e) with RB3014, a
potent and specific small molecule inhibitor of APN22, both disrupted
the normal subcellular distribution of CMPs and blocked the cells’
ability to enter the exploratory state for over 16 h (Supplementary
Video 4, part a, online). When cells in the exploratory state were
incubated with a mAb against membrane-bound APN (SJ1D1), the
cell extensions both lost their ordered arrangement of CMPs (Fig. 7g)
and were withdrawn as the cells returned to the spherical state
(Fig. 7f) (n ¼ 4). This proves several points. First, both the presence
and the proteolytic activity of APN are essential for the topological
integrity of CMPs; second, when this integrity is disturbed, the cell can
no longer polarize or migrate, which may point to a route for selective
inhibition of metastasis; and third, the cell surface proteins assembled
as CMPs are organizationally dependent on APN, indicating that these
proteins form a molecular network. We have thus detected a mole-
cular network in situ and demonstrated that its cellular function is
dependent on the continuing activity of its lead protein.

Notably, the average fluorescence intensities of the 23 cell surface
proteins per cell, including APN, showed little if any reliable difference
between the spherical and the exploratory cell states (Fig. 7h). At
the CMP level, however, these states were readily distinguishable

(Fig. 7i), underlining the advantages of the toponome approach to
study cell functions.

We have collected several hundred images of this cell polarization
process to construct, in silico, a video of normalized CMP movements
in a synthetic TE671 cell with and without APN inhibition (Supple-
mentary Video 4, part b, online). Intriguingly, APN appears not to be
among the lead proteins in normal muscle cells and neither RB3014
nor SJ1D1 have a significant effect on such cells (results not shown).

DISCUSSION

MELC allows a large number of molecular components to be coloca-
lized in fixed cells and tissue. It can detect any molecule for which a
fluorescently labeled ligand is available. In addition, it can identify
transient or rare protein associations in three dimensions in a subset of
cells or in subcellular compartments with unprecedented detail, and
can be used to reconstruct the dynamics of molecular networks by in
silico modeling. MELC can thus be used to show when and where
proteins colocalize in cellular or tissue compartments, which proteins
are excluded, how these associations are altered by pathology and how
proteins are functionally interrelated. This makes it possible to
systematically decipher the rules governing protein co- and anti-
colocation within individual cells. Recently established approaches of
automated analysis of subcellular patterns of single proteins in
cells24,25 and analysis of similar patterns in tissues26 are important
for high-throughput analysis. MELC is an automated multidimen-
sional fluorescence imaging technology with functional resolution.

Construction of tag libraries requires thorough calibration proce-
dures to exclude sterical hindrance of tags. Sterical hindrance may
occur when different monoclonal antibodies are directed against
neighboring epitopes. Such interference may provide important bio-
logical information. The tag libraries used in this study were highly
calibrated by determining the proper sequence of labeling cycles.
Therefore, an important limitation of MELC is not sterical hindrance,
but the discovery of new proteins. We could however address this
limitation in the future by using large recombinant randomized
antibody libraries. Because a fixed sample withstands the MELC
procedure for at least two weeks, we may attempt experiments
comprising more than 1,000 tags and screening of tissue microarrays.

The protein clusters or CMPs described in this study differ from
previously described protein complexes by including weakly or tran-
siently interacting proteins, rather than being restricted to strongly
interacting proteins whose complexes withstand purification. Inter-
estingly, very few protein localizations detected in this study, in
particular in the rhabdomyosarcoma cell line, have previously been
reported. CMPs represent the basic combinatorial molecular units of
proteomes in all the cell and tissue types we have analyzed, and are
organized into higher order units, so-called CMP motifs. Their
frequencies follow the rules observed in many highly organized
systems, as they fulfill Zipf ’s law. The frequencies of individual

CMP motif 1 CMP motif 2

a

b

Figure 6 Toponome maps of lamina I/II in rat spinal cords with and without

CCI as a model of chronic neuropathic pain. (a) Toponome map (library 8)

showing the distribution of a CMP motif 1 apparently associated with

dendrites (dark streaks) and characteristic of normal synaptic regions

superimposed on a phase contrast image. (b) Toponome map showing the

distribution of CMP motif 2, characteristic of chronic neuropathic pain

(absent in a) and spatially associated with a small number of dendrites

superimposed on a phase contrast image. Note that CMP motif 1 is
specifically lost and CMP motif 2 is specifically acquired in chronic

neuropathic pain (CMP motifs are defined in Supplementary Table 2 online).

Together two healthy control and two CCI rats were analyzed within an

orienting study. Scale bar, 10 mm.
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molecules17,27, and molecular interactions28 all appear to obey similar
power laws. Our study indicates that this law also governs the
frequency of protein colocations in vivo. MELC makes protein systems
in situ amenable to mathematical analysis using methods from
combinatorial statistics and geometry.

The CMP motifs we have described in model skin diseases, chronic
pain and tumor cell polarization are assembled around state-specific
lead proteins, probably representing the interaction hubs typical
of scale-free networks10,11. We show that lead proteins are highly
predictive molecular elements controlling the formation of molecular
networks and the associated cellular functionalities. MELC has been
used to identify FcgRIII as a lead protein and potential target in
amyotrophic lateral sclerosis29, a finding that has now been confirmed
by the phenotype of an Fcg receptor knockout mouse30.

In conclusion, MELC provides a tool to analyze protein
organization in cells and to identify candidate target proteins in

disease. Our findings also demonstrate how functional protein
networks can be deciphered at the single cell level: once lead
proteins have been identified in functionally relevant CMP motifs,
they can be selectively inhibited or deleted, and the functional
consequences observed. A systematic MELC-based approach using
a proteome-wide set of affinity ligands might decipher the
complete functional plan of a cell or a tissue using lead proteins as
anchor points.

METHODS
Patients and antibodies. All participants gave informed consent and the

experiments were approved by the local ethics committee. Demographic data

of patients and controls are presented in Supplementary Table 5 online.

Samples were examined using a blind analysis. Punch biopsies 6 mm in

diameter of representative skin conditions were taken at the time of patient

admission and snap-frozen in liquid nitrogen.

a

c

d

b e

g

h i

f

CMP1

M
ea

n 
flu

or
es

ce
nc

e
in

te
ns

ity
 p

er
 c

el
l

CMP2 CMP3 CMP4 CMP5 CMP6

157 common CMPs

Spherical cell state
180
160
140
120
100

80
60
40
20
0

C
D

10
C

D
13

C
D

18
C

D
26

C
D

29
C

D
36

C
D

38
C

D
44

C
D

54
C

D
56

C
D

57
C

D
58

C
D

71
C

D
80

C
D

11
b

C
D

13
8

C
D

49
f

C
D

49
d

C
D

62
I

C
D

45
ra

C
yt

ok
er

at
in

H
LA

-D
R

H
LA

-D
Q

Exploratory cell state

571
CMPs

spherical
state

4,530
CMPs

exploratory
state

CMP7

CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 CMP7

Figure 7 Toponome maps of TE671 rhabdomyosarcoma cells before and
during transition to the migratory state. (a) Distribution of seven prominent

CMPs superimposed on a phase contrast image of a TE671 cell in the

exploratory state (library 9; CMPs mapped are defined in Supplementary

Table 2 online), forming an ordered sequence from the tip of two

extensions towards the cell body. (b) Spectrum of alanine-specific protease

activity at the surface of a TE671 cell in the exploratory state as indicated

by breakdown of the fluorogenic substrate bis-ala-rhodamine 110 (highest

activities shown in red), showing the high activity associated with cell

extensions of the type shown in a. (c,d) Detail of boxed area in a showing

the CMPs mapped in a (c), and the distribution of APN (d) (which is

strongly correlated with the alanine-specific protease activity shown in b).

(e,f) Distribution of the same CMPs superimposed on phase contrast images of TE671 cells in the spherical state before (e) and after (f) treatment with mAb

SJ1D1. Note the disordered arrangement of the CMPs in f compared with e. (g) Distribution of the same CMPs superimposed on a phase contrast image of a

TE671 cell in the exploratory state treated with SJ1D1, showing that the ordered sequence of CMPs seen in the untreated cell (a) has been lost as the cell

reverts to the spherical state (see also Supplementary Video 4, part a, online). (h) Mean fluorescence intensities of the 23 molecules per cell investigated in

the spherical cell of (e) and polarized cell of (a). (i) Total number of CMPs of these molecules, giving unique CMP clusters for the two cell states with very

little overlap. Note, however only little difference in the degree of expression of single epitopes as shown in h. Together a total of 190 MELC experiments

and 93 corresponding live cell imaging experiments were performed to reconstruct and explore experimentally the time-dependent steps of the cell
polarization toponome dynamics. Scale bars, 10 mm.
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Antibodies were conjugated to PE or FITC and are listed in Supplementary

Table 1 online.

Preparation of cells and tissue sections. We prepared 5-mm tissue sections at

–25 1C using a cryotome, fixed in acetone at –20 1C for 10 min and stored at

–20 1C for several days or –80 1C for longer time intervals until use. PBMCs

were isolated from the blood of a healthy volunteer using Ficoll, placed on a

slide and air-dried before snap freezing. Cultured human cells (TE671 rhabdo-

myosarcoma cell line, and primary human hepatocytes) were washed with 10%

DMSO in PBS, fixed in fresh 4% paraformaldehyde, and washed in PBS, before

air drying and snap freezing as before. Before use (see section on MELC below),

all samples were rehydrated in PBS at 20 1C, incubated with normal goat serum

for 30 min, and washed again in PBS.

Sciatic nerve ligation to model CCI in rats was performed as described20

(provided by F. Hucho and coworkers, FU Berlin). After killing the animals 7 d

later, the spinal cord was removed, and small tissue blocks of the relevant spinal

cord layers L3/4 were prepared as above.

To localize alanine-specific proteases, we incubated TE671 cells in 10–5 M

bis-ala-rhodamine 110, and the corresponding fluorogenic signal was imaged

over 180 s using a confocal laser scanning microscope. Live cells were imaged

using a cell observer (Zeiss; Supplementary Video 4 online). Fresh human

muscle biopsies and rat brain tissue were prepared as described above.

MELC. Aspects of MELC technology have been described previously2. In brief,

a slide with a given specimen was placed on the stage of an inverted wide-field

fluorescence microscope (Leica or Zeiss) equipped with fluorescence filters for

FITC and PE. Fluorochrome-labeled antibodies and wash solutions were added

and removed robotically under temperature control, avoiding any displacement

of the sample and objective. In each cycle, a pair of antibodies was added; phase

contrast and fluorescence images were acquired by a high-sensitivity cooled

CCD camera; the sample was washed with PBS and bleached at the excitation

wavelengths; and postbleaching phase contrast and fluorescence images were

acquired. Data acquisition was fully automated using software developed by

ZENIT Technology Park and the MPRR group (Supplementary Fig. 1c online).

For analyzing protein abundance in skin samples, the frequency of pixels

positive for each molecule in each tissue compartment (such as epidermis or

dermis) was normalized to a horizontal width of 100 mm to compensate for the

vertical stratification of epithelial tissue, and tissue compartments were

distinguished using masks defined by a pan-cytokeratin antibody. Controls

for MELC data were performed using conventional immunocytochemistry or

in some cases flow cytometry analyses of PBMCs, to examine whether the

frequencies and distribution patterns of given labeled proteins were comparable

(data not shown).

Construction of 2D toponome maps. Fluorescence images produced by each

antibody were aligned pixel-wise using the phase contrast images, with an in-

register accuracy of +/– one pixel. Background and illumination faults were

then removed by flat-field correction. Fluorescent pixels or voxels were then

parsed by regarding the list of fluorescence intensities I1, I2, I3yIn for proteins

1, 2, 3yn in any particular pixel or voxel as the values of an n-dimensional

vector associated with that pixel or voxel. This vector can then be binarized by

selecting thresholds T1, T2, T3yTn for proteins 1, 2, 3yn, and setting the

vector values for any protein m to zero if Im o Tm and to 1 if not, using

thresholds manually set by human experts from within an automatically

generated range. The binarized images were then combined to form a list of

CMPs representing the proteins expressed in each pixel, or groups of CMPs

representing regions of interest. This procedure is performed by using MATLAB

programming language allowing us 52 epitopes to be represented in one 2D

array of doubles, to be stored and analyzed. For higher numbers of epitopes

several 2D arrays are combined. CMPs were defined as closely related when

they had in common the same lead protein(s), but were distinct by the presence

or absence of one or several other proteins. Different degrees of CMP variation

were classified ranging from slight (one different protein) to extended (two and

more different proteins).

Data analysis, statistics and visualization. To analyze CMPs we developed

‘MotifFinder’ and ‘MotifAnalyzer’ software packages to search for and visualize

CMP motifs. Briefly, to cluster CMPs and identify CMP motifs of interest,

MotifFinder looks for CMPs or CMP motifs whose overall frequency differs

significantly in two different sample groups (e.g., healthy versus diseased

tissue). To do this, it calculates the frequency of each n-member CMP motif

with a bounded number of ‘non-wild cards’ for each run from either group,

starting with all CMP motifs consisting entirely of wild cards except at one or

two positions and progressively decreasing the number of wild cards in the

motifs up to a limit imposed by computational resources. Following this, it

identifies the CMPs or CMP motifs whose frequency distribution differs

significantly in the two sample groups using the Wilcoxon rank-sum test or

Student’s t-test. MotifAnalyzer then allows the user to visualize where the pixels

(or voxels) carrying these motifs are located in a given biological structure,

permitting visual exploration of the data and suggesting possible biological

explanations for the motif distributions that are observed. The motifs of

greatest interest are then color-coded and superimposed on the corresponding

biological structures to create toponome maps.

3D imaging. 3D imaging of MELC runs was performed by generating and

visualizing z-stack raw images for each antibody signal from top to bottom of a

sample; deconvoluting these images using a standard algorithm (XCOSM)31

working with a specific point spread function; setting thresholds for each

antibody signal from each optical plane as before; overlaying all binarized

images to construct large scale protein colocalization maps using a MATLAB

algorithm; and constructing 3D toponome maps in the same way as was done

for two dimensions. The latter two visualization steps were performed by using

algorithms provided by IMARIS software packages.

Note: Supplementary information is available on the Nature Biotechnology website.
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15. Böckelmann, R. et al. Suprabasal overexpression of the hsRPB7 gene in psoriatic
epidermis as identified by a reverse transcriptase-polymerase chain reaction differential
display model comparing psoriasis plaque tissue with peritonsillar mucosa. Am. J.
Pathol. 158, 367–372 (2001).

16. Zipf, G.K.. Human Behaviour and the Principle of Least Effort (Addison-Wesley,
Cambridge MA, 1949).

17. Hoyle, D.C., Rattray, M., Jupp, R. & Brass, A. Making sense of microarray data
distributions. Bioinformatics 18, 576–584 (2002).

18. Ferrer i Cancho, R. & Sole, R.V. Least effort and the origins of scaling in human
language. Proc. Natl. Acad. Sci. U.S.A. 100, 788–791 (2003).

19. Newman, M.E.J. Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46,
323–351 (2005).

20. Bennett, G.J. & Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of
pain sensation like those seen in man. Pain 33, 87–107 (1988).

21. Garry, E.M. et al. Neuropathic sensitization of behavioral reflexes and spinal NMDA
receptor/CaM kinase II interactions are disrupted in PSD-95 mutant mice. Curr. Biol.
13, 321–328 (2003).

22. Chen, H., Roques, B.P. & Fournie-Zaluski, M.C. Design of the first highly potent and
selective aminopeptidase N (EC 3.4.11.2) inhibitor. Bioorg. Med. Chem. Lett. 9,
1511–1516 (1999).

23. Kehlen, A., Lendeckel, U., Dralle, H., Langner, J. & Hoang-Vu, C. Biological signifi-
cance of aminopeptidase N/CD13 in thyroid carcinomas. Cancer Res. 63, 8500–8506
(2003).

24. Conrad, C. et al. Automatic identification of subcellular phenotypes on human cell
arrays. Genome Res. 14, 1130–1136 (2004).

25. Chen, X. & Murphy, R.F. Objective clustering of proteins based on subcellular location
patterns. J. Biomed. Biotechol. 2, 87–95 (2005).

26. Uhlen, M. et al. A human protein atlas for normal and cancer tissues based on antibody
proteomics. Mol. Cell Proteomics 4, 1920–1932 (2005).

27. Koonin, E.V., Wolf, Y.I. & Karev, G.P. The structure of the protein universe and genome
evolution. Nature 420, 218–223 (2002).

28. Jeong, H., Mason, S.P., Barabasi, A.L. & Oltvai, Z.N. Lethality and centrality in protein
networks. Nature 411, 41–42 (2001).

29. Schubert, W. Method of blocking cytotoxic activity in patients with amyotrophic lateral
sclerosis using antibodies to FcgRIII. US patent no. 6,638,506 (first published as
international patent application WO 99/29731, 1999).

30. Mohamed, H.A. et al. Immunoglobulin Fc gamma receptor promotes immunoglobulin
uptake, immunoglobulin-mediated calcium increase, and neurotransmitter release in
motor neurons. J. Neurosci. Res. 69, 110–116 (2002).

31. Conchello, J.A. & McNally, J.G. Fast regularization technique for expectation max-
imization algorithm for computational optical sectioning microscopy. in Three-Dimen-
sional Microscopy: Image Acquisition and Processing Cogswell, C.J., Kino, G.S. &
Wilson, T. (eds.) Proc. SPIE 2655, 199–208 (1996).

NATURE BIOTECHNOLOGY ADVANCE ONLINE PUBLICATION 9

A R T I C L E S
©

20
06

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eb
io

te
ch

no
lo

gy


